Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Ethyl 3,5-bis(allyloxy)-4-bromobenzoate

Peter Kirsop, John M. D. Storey and William T. A. Harrison*

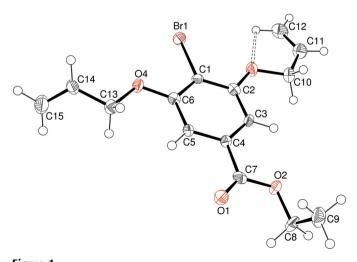
Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland

Correspondence e-mail: w.harrison@abdn.ac.uk

Key indicators

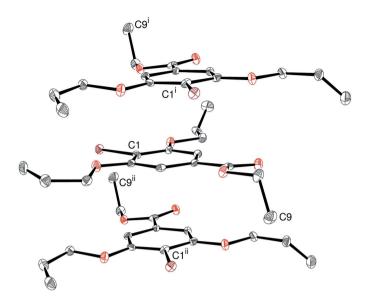
Single-crystal X-ray study $T=120~\mathrm{K}$ Mean $\sigma(\mathrm{C-C})=0.006~\mathrm{\mathring{A}}$ R factor = 0.052 wR factor = 0.084 Data-to-parameter ratio = 19.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.


The asymmetric molecular conformation of the title compound, $C_{15}H_{17}BrO_4$, may be be influenced by an intramolecular $C-H\cdots O$ interaction. The molecules form $\pi-\pi$ stacks in the crystal structure.

Received 16 January 2007 Accepted 16 January 2007

Comment


The title compound, (I) (Fig. 1), was prepared as part of our studies to determine the philicity of aryl radicals by competitive cyclization reactions (Kirsop *et al.*, 2004).

Compound (I) possesses normal geometrical parameters. The dihedral angle between the mean plane of the C1–C6 benzene ring and the plane of the C7/O1/O2 group is 6.0 (5)°. The two $-O-CH_2-CH=CH_2$ side chains have very different conformations (Fig. 1), which may be attributable, at least in part, to an intramolecular C12 $-H12A\cdots$ O3 interaction (Table 1). The molecules form π – π stacks in the crystal structure (Fig. 2), with alternating centroid-to-centroid

The molecular structure of (I), showing 50% displacement ellipsoids for non-H atoms. The intramolecular $C-H \cdot \cdot \cdot O$ interaction referred to in the *Comment* is indicated by a dashed line.

© 2007 International Union of Crystallography All rights reserved

Figure 2 Part of a π - π stacked column of molecules (30% displacement ellipsoids and H atoms omitted). [Symmetry codes: (i) x, -y, 1-z; (ii) x, 1-y, 1-z.]

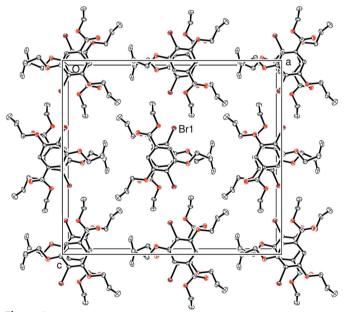


Figure 3
Unit-cell contents of (I), viewed down [010] (50% displacement ellipsoids and H atoms omitted).

separations between benzene rings $[Cg \cdots Cg^i = 3.626 (2), Cg \cdots Cg^{ii} = 3.466 (2) \text{ Å; symmetry codes: (i) } x, -y, 1 - z; (ii) x, 1 - y, 1 - z]$. The stacking interactions give rise to columns of molecules along [010] (Fig. 3).

Experimental

4-Bromo-3,5-dihydroxybenzoic acid (6.8 g, 0.03 mol) was added to 100 ml of ethanol. Concentrated $\rm H_2SO_4$ (1 ml) was added and the mixture was refluxed for 14 h. After cooling, the solvent was removed at reduced pressure to give a pale yellow oil. Diethyl ether (100 ml) was added and the mixture was neutralized by careful addition of a

saturated NaHCO₃ solution (100 ml). The mixture was transferred to a separating funnel and the product extracted with diethyl ether (4 × 100 ml). The combined extracts were dried over anhydrous MgSO₄ and evaporated under reduced pressure to give 4-bromo-3,5-dihydroxybenzoic acid ethyl ester as a white powder (7.5 g, 96%). Ethyl 4-bromo-3,5-dihydroxybenzoate (3.00 g, 0.011 mol), allyl bromide (1.30 g, 0.011 mol) and K_2CO_3 (8.00 g, 0.0579 mol) were added to 100 ml of dry acetone. The mixture was stirred at room temperature under a nitrogen atmosphere for 14 h, then filtered and the solvent removed at reduced pressure to give a dark brown oil. Thin layer chromatography (4:1 hexane–ethyl acetate eluent) showed the title compound as a sharp spot at $R_F = 0.52$. The crude product was purified by flash column chromatography to yield a white powder (1.42 g, 38%). A sample of this powder was recrystallized from hot hexane to give translucent needles of (I) (m.p. 315–317 K).

Crystal data

 $\begin{array}{lll} C_{15} H_{17} Br O_4 & Z=8 \\ M_r=341.20 & D_x=1.483 \ {\rm Mg \ m^{-3}} \\ Orthorhombic, C222_1 & Mo \ K\alpha \ radiation \\ a=22.1421 \ (2) \ \mathring{A} & \mu=2.70 \ {\rm mm^{-1}} \\ b=7.0559 \ (13) \ \mathring{A} & T=120 \ (2) \ {\rm K} \\ c=19.5604 \ (11) \ \mathring{A} & {\rm Needle, colourless} \\ V=3056.0 \ (6) \ \mathring{A}^3 & 0.22 \times 0.04 \times 0.02 \ {\rm mm} \end{array}$

Data collection

 $\begin{array}{lll} \mbox{Nonius KappaCCD diffractometer} & 10933 \mbox{ measured reflections} \\ \mbox{ω and φ scans} & 3495 \mbox{ independent reflections} \\ \mbox{$Absorption correction: multi-scan} & 2604 \mbox{ reflections with } I > 2\sigma(I) \\ \mbox{$T_{\rm min}$} & 0.588, T_{\rm max} = 0.948 & \theta_{\rm max} = 27.5^{\circ} \\ \end{array}$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.052$ $wR(F^2) = 0.084$ S = 1.01 3495 reflections 183 parameters H-atom parameters constrained
$$\begin{split} w &= 1/[\sigma^2(F_o^2) + (0.0143P)^2] \\ \text{where } P &= (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\text{max}} &< 0.001 \\ \Delta\rho_{\text{max}} &= 0.47 \text{ e Å}^{-3} \\ \Delta\rho_{\text{min}} &= -0.53 \text{ e Å}^{-3} \\ \text{Absolute structure: Flack (1983),} \\ 1500 \text{ Friedel pairs} \\ \text{Flack parameter: } 0.106 \text{ (13)} \end{split}$$

Table 1Hydrogen-bond geometry (Å, °).

$D-\mathbf{H}\cdot\cdot\cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathbf{H}\cdot\cdot\cdot A$
C12—H12A···O3	0.95	2.39	2.715 (6)	100

H atoms were placed in idealized locations (C—H = 0.95–0.99 Å) and refined as riding atoms, with $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm C})$ or $1.5 U_{\rm eq}({\rm methyl~C})$.

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

We thank the EPSRC UK National Crystallography Service (University of Southampton) for the data collection.

organic papers

References

Blessing, R. H. (1995). *Acta Cryst.* **A51**, 33–38. Farrugia, L. J. (1997). *J. Appl. Cryst.* **30**, 565. Flack, H. D. (1983). *Acta Cryst.* **A39**, 876–881. Kirsop, P., Storey, J. M. D. & Harrison, W. T. A. (2004). *Acta Cryst.* E**60**, o1147– Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Acta Cryst. (2007). E63, o833–o835 Kirsop et al. • C₁₅H₁₇BrO₄ 0835